气候变化驱动下的全球降水演变及其不均匀性研究进展Research Progress on Global Precipitation Evolution and Its Spatial Inhomogeneity Driven by Climate Change
徐建军,刘升源,涂石飞,梁卓轩,张邦林
摘要(Abstract):
【目的】系统梳理近年来关于全球降水演变及其空间不均匀性研究成果,揭示全球变暖对水循环的影响机制,为提升降水变化模拟和预估能力提供理论支持。【方法】综述全球变暖与水循环之间的物理联系,归纳从历史观测和模式预估中发现的全球降水变化特征,介绍近年来用于量化降水不均匀性的研究方法与诊断框架。【结果】全球水循环正在加速,总体呈湿变湿、干变干、陆地干旱化、极端降水增强等特征。卫星观测显示,全球平均年降水量变化并不显著,主要由于内部变率掩盖了全球变暖驱动的趋势信号。现阶段全球气候模式可模拟全球尺度的平均降水变化趋势,但在区域尺度上仍有较大不确定性;在全球变暖背景下,预计未来全球陆地年平均降水将增加,区域性和季节性差异将增加。降水不均匀性量化研究不断发展,为深入理解极端降水空间结构变化提供新的技术路径和理论支撑。【结论】在逐步完善全球降水观测网络和气候模式的基础上,全球降水研究正从平均量分析向不均匀性结构演变拓展,未来需在观测数据精度、模式模拟能力及约束、诊断方法等方面持续提升,以更准确地预测降水变化,更好地服务气候适应与风险管理。
关键词(KeyWords): 气候变化;降水;不均匀性;气候预估;气候模式
基金项目(Foundation): 国家自然科学基金重大项目(72293604);国家自然科学基金青年基金(42405003);国家自然科学基金气象联合基金(U2342225)
作者(Author): 徐建军,刘升源,涂石飞,梁卓轩,张邦林
参考文献(References):
- [1] TRENBERTH K E, FASULLO J T. Regional energy and water cycles:transports from ocean to land[J]. Journal of Climate, 2013, 26(20):7837-7851.
- [2] ALLAN R P, BARLOW M, BYRNE M P, et al. Advances in understanding large-scale responses of the water cycle to climate change[J]. Annals of the New York Academy of Sciences, 2020, 1472(1):49-75.
- [3] AIHAITI A, JIANG Z, ZHU L, et al. Risk changes of compound temperature and precipitation extremes in China under 1.5℃and 2℃global warming[J]. Atmospheric Research, 2021, 264:105838.
- [4] KAZEMZADEH M, HASHEMI H, JAMALI S, et al.Detecting the greatest changes in global satellite-based precipitation observations[J]. Remote Sensing, 2022, 14(21):5433.
- [5] LIU C, ALLAN R P. Multisatellite observed responses of precipitation and its extremes to interannual climate variability[J]. Journal of Geophysical Research:Atmospheres,2012, 117(D3):2011JD016568.
- [6] CHOU C, LAN C W. Changes in the annual range of precipitation under global warming[J]. Journal of Climate,2012, 25(1):222-235.
- [7] SIPPEL S, ZSCHEISCHLER J, HEIMANN M, et al.Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60years?[J]. Hydrology and Earth System Sciences, 2017, 21(1):441-458.
- [8] Intergovernmental Panel On Climate Change. Climate change 2021–the physical science basis:working groupⅠcontribution to the sixth assessment report of the intergovernmental panel on climate change–summary for policymakers[M/OL]. London:Cambridge University Press, 2023[2023-08-30]. https://www.cambridge.org/core/product/identifier/9781009157896/type/book.
- [9] HERVéD, KRISHNAN R, JAMES R, et al. Water cycle changes[M/OL]//MASSON DELMOTTE V, ZHAI P,PIRANI A, et al. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2021:1055-1210. https://doi. org/10.1017/9781009157896.010.
- [10] ZAITCHIK B F, RODELL M, BIASUTTI M, et al. Wetting and drying trends under climate change[J]. Nature Water, 2023, 1(6):502-513.
- [11] WESTRA S, ALEXANDER L V, ZWIERS F W. Global increasing trends in annual maximum daily precipitation[J]. Journal of Climate, 2013, 26(11):3904-3918.
- [12] DONAT M G, ANGéLIL O, UKKOLA A M. Intensification of precipitation extremes in the world’s humid and water-limited regions[J]. Environmental Research Letters,2019, 14(6):065003.
- [13] FOWLER H J, LENDERINK G, PREIN A F, et al. Anthropogenic intensification of short-duration rainfall extremes[J].Nature Reviews Earth&Environment, 2021, 2(2):107-122.
- [14] GU L, CHEN J, YIN J, et al. Global increases in compound flood-hot extreme hazards under climate warming[J]. Geophysical Research Letters, 2022, 49(8):e2022GL097726.
- [15] RENTSCHLER J, AVNER P, MARCONCINI M, et al.Global evidence of rapid urban growth in flood zones since 1985[J]. Nature, 2023, 622(7981):87-92.
- [16] LIU J, WU D, LI Y, et al. Spatiotemporal variation of precipitation on a global scale from 1960 to 2016 in a new normalized daily precipitation dataset[J]. International Journal of Climatology, 2022, 42(7):3648-3665.
- [17] POLSON D, HEGERL G C, ALLAN R P, et al. Have greenhouse gases intensified the contrast between wet and dry regions?[J]. Geophysical Research Letters, 2013, 40(17):4783-4787.
- [18] LIU C, ALLAN R P. Observed and simulated precipitation responses in wet and dry regions 1850–2100[J]. Environmental Research Letters, 2013, 8(3):034002.
- [19] FENG H, ZHANG M. Global land moisture trends:drier in dry and wetter in wet over land[J]. Scientific Reports,2015, 5(1):18018.
- [20] POLSON D, HEGERL G C. Strengthening contrast between precipitation in tropical wet and dry regions[J].Geophysical Research Letters, 2017, 44(1):365-373.
- [21] SCHURER A P, BALLINGER A P, FRIEDMAN A R, et al. Human influence strengthens the contrast between tropical wet and dry regions[J]. Environmental Research Letters, 2020, 15(10):104026.
- [22] DURACK P J, WIJFFELS S E, MATEAR R J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000[J]. Science, 2012, 336(6080):455-458.
- [23] DURACK P. Ocean salinity and the global water cycle[J].Oceanography, 2015, 28(1, Special Issue on the Salinity Processes in the Upper-ocean Regional Study):20-31.
- [24] ALLAN R P, LIU C, ZAHN M, et al. Physically consistent responses of the global atmospheric hydrological cycle in models and observations[J]. Surveys in Geophysics, 2014, 35(3):533-552.
- [25] KUMAR S, ALLAN R P, ZWIERS F, et al. Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land[J/OL].Geophysical Research Letters, 2015, 42(24)[2024-08-28].https://agupubs. onlinelibrary. wiley. com/doi/10.1002/2015GL066858.
- [26] GREVE P, ORLOWSKY B, MUELLER B, et al. Global assessment of trends in wetting and drying over land[J].Nature Geoscience, 2014, 7(10):716-721.
- [27] YANG T, DING J, LIU D, et al. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm[J]. Journal of Climate, 2019, 32(3):737-748.
- [28] BYRNE M P, O'GORMAN P A. The response of precipitation minus evapotranspiration to climate warming:why the“wet-get-wetter, dry-get-drier” scaling does not hold over land[J]. Journal of Climate, 2015, 28(20):8078-8092.
- [29] ALLAN R P. Amplified seasonal range in precipitation minus evaporation[J]. Environmental Research Letters,2023, 18(9):094004.
- [30] WANG X, LUO M, SONG F, et al. Precipitation seasonality amplifies as earth warms[J]. Geophysical Research Letters, 2024, 51(10):e2024GL109132.
- [31] CHOU C, CHIANG J C H, LAN C-W, et al. Increase in the range between wet and dry season precipitation[J].Nature Geoscience, 2013, 6(4):263-267.
- [32] FENG S, FU Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics,2013, 13(19):10081-10094.
- [33] FU Q, FENG S. Responses of terrestrial aridity to global warming[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(13):7863-7875.
- [34] YUAN X, WANG Y, JI P, et al. A global transition to flash droughts under climate change[J]. Science, 2023, 380(6641):187-191.
- [35] CHEN L, BRUN P, BURI P, et al. Global increase in the occurrence and impact of multiyear droughts[J]. Science,2025, 387(6731):278-284.
- [36] BAO J, STEVENS B, KLUFT L, et al. Intensification of daily tropical precipitation extremes from more organized convection[J]. Science Advances, 2024, 10(8):eadj6801.
- [37] THACKERAY C W, HALL A, NORRIS J, et al. Constraining the increased frequency of global precipitation extremes under warming[J]. Nature Climate Change,2022, 12(5):441-448.
- [38] SUN Q, MIAO C, DUAN Q, et al. A review of global precipitation data sets:data sources, estimation, and intercomparisons[J]. Reviews of Geophysics, 2018, 56(1):79-107.
- [39] ADLER R F, GU G, SAPIANO M, et al. Global precipitation:means, variations and trends during the satellite era(1979–2014)[J]. Surveys in Geophysics, 2017, 38(4):679-699.
- [40] HUFFMAN G J, ADLER R F, BEHRANGI A, et al. The new version 3.2 global precipitation climatology project(GPCP)monthly and daily precipitation products[J]. Journal of Climate, 2023, 36(21):7635-7655.
- [41] ADLER R, SAPIANO M, HUFFMAN G, et al. The global precipitation climatology project(GPCP)monthly analysis(new version 2.3)and a review of 2017 global precipitation[J]. Atmosphere, 2018, 9(4):138.
- [42] GU G, ADLER R F. Observed variability and trends in global precipitation during 1979-2020[J]. Climate Dynamics, 2023, 61(1):131-150.
- [43] GU G, ADLER R F. Variability and trends in tropical precipitation intensity in observations and climate models[J/OL]. Climate Dynamics, 2024, 62(8):7429-7443.
- [44] ABDOLLAHIPOUR A, AHMADI H, AMINNEJAD B. A review of downscaling methods of satellite-based precipitation estimates[J]. Earth Science Informatics, 2022, 15(1):1-20.
- [45] HEGERL G C, BLACK E, ALLAN R P, et al. Challenges in quantifying changes in the global water cycle[J]. Bulletin of the American Meteorological Society, 2015, 96(7):1097-1116.
- [46] LIU S, LEUNG J C-H, XU J, et al. A general framework quantifying variability in spatial inhomogeneity of global precipitation and its contribution[J]. Climate Dynamics,2025, 63(2):129.
- [47] YU L, JIN X, JOSEY S A, et al. The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity[J]. Journal of Climate, 2017, 30(10):3829-3852.
- [48] LI X, ZHAI G, GAO S, et al. Decadal trends of global precipitation in the recent 30 years[J]. Atmospheric Science Letters, 2015, 16(1):22-26.
- [49] YIN X, GRUBER A, ARKIN P. Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001[J]. Journal of Hydrometeorology, 2004, 5(6):1207-1222.
- [50] VICENTE-SERRANO S M, GARCíA-HERRERA R,PE?A-ANGULO D, et al. Do CMIP models capture longterm observed annual precipitation trends?[J]. Climate Dynamics, 2022, 58(9):2825-2842.
- [51] ADLER R F, GU G. Global precipitation for the year2023 and how it relates to longer term variations and trends[J]. Atmosphere, 2024, 15(5):535.
- [52]周天军,陈梓明,陈晓龙,等. IPCC ar6报告解读:未来的全球气候:基于情景的预估和近期信息[J].气候变化研究进展, 2021, 17(6):652-663.
- [53] ZHANG W, FURTADO K, WU P, et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world[J]. Science Advances, 2021, 7(31):eabf8021.
- [54] ZHANG W, FURTADO K, ZHOU T, et al. Constraining extreme precipitation projections using past precipitation variability[J]. Nature Communications, 2022, 13(1):6319.
- [55] NORDLING K, FAHRENBACH N L S, SAMSET B H.Climate variability can outweigh the influence of climate mean changes for extreme precipitation under global warming[J]. Atmospheric Chemistry and Physics, 2025, 25(3):1659-1684.
- [56] CHEN F, HUANG L, CAO D, et al.“Mega-sandwich pattern” of interdecadal precipitation variations and its regional manifestation in the Asian summer precipitation region[J]. Science Bulletin, 2024, 69(17):2656-2659.
- [57] AIHAITI A, WANG Y, ALI M, et al. Probability distribution characteristics of summer extreme precipitation in Xinjiang, China during 1970–2021[J/OL]. Theoretical and Applied Climatology, 2023, 151(1):753-766.
- [58] LI J, YU R, YUE X, et al. Quantifying the spatial unevenness of precipitation in central and eastern china[J]. Journal of Hydrometeorology, 2023, 24(11):2141-2149.
- [59] YANG H, XU G, MAO H, et al. Spatiotemporal variation in precipitation and water vapor transport over central Asia in winter and summer under global warming[J]. Frontiers in Earth Science, 2020, 8:297.
- [60] TADI?L, BRLEKOVI?T, HAJDINGER A, et al. Analysis of the inhomogeneous effect of different meteorological trends on drought:an example from continental Croatia[J]. Water, 2019, 11(12):2625.
- [61] AHMED K, NAWAZ N, KHAN N, et al. Inhomogeneity detection in the precipitation series:case of arid province of Pakistan:5[J]. Environment, Development and Sustainability, 2021, 23(5):7176-7192.
- [62] GHANGHAS A, SHARMA A, DEY S, et al. How is spatial homogeneity in precipitation extremes changing globally?[J]. Geophysical Research Letters, 2023, 50(16):e2023GL103233.
- [63] LIU W, FU Z, CHEN X, et al. Inhomogeneity of precipitation and its influencing factors in Northwest China from1961 to 2015[J]. Theoretical and Applied Climatology,2019, 138(3):1831-1844.
- [64] CHOU C, TU J Y, TAN P H. Asymmetry of tropical precipitation change under global warming[J]. Geophysical Research Letters, 2007, 34(17):2007GL030327.
- [65] ZHANG B, ZHANG R, WU L, et al. Changes of precipitation and moisture extremes in ERA-interim reanalysis viewed from a new space[J]. Environmental Research Communications, 2020, 2(1):011004.
- [66] ZHOU S, YU B, ZHANG Y. Global concurrent climate extremes exacerbated by anthropogenic climate change[J].Science Advances, 2023, 9(10):eabo1638.