硇洲岛岩礁带大型海藻固碳潜能Carbon Sequestration Potential Research of Macroalage in the Intertidal Rocky Zone in Naozhou Island
刘耀谦;张才学;孙省利;孙洁;杨国欢;
摘要(Abstract):
【目的】研究大型海藻固碳及氮磷吸收潜能。【方法】分析硇洲岛岩礁带19种生物量大于50 g·m(-2)自然生长的大型海藻固碳量、生产力和TOC,对比分析岩礁带和距岩礁带4 km处海域海水中无机氮和无机磷含量。【结果】褐藻门有3种,生物量、固碳量和生产力最大,分别为20 498 g·m(-2)自然生长的大型海藻固碳量、生产力和TOC,对比分析岩礁带和距岩礁带4 km处海域海水中无机氮和无机磷含量。【结果】褐藻门有3种,生物量、固碳量和生产力最大,分别为20 498 g·m(-2),550 762 g·a(-2),550 762 g·a(-1),2 466 g·m(-1),2 466 g·m(-2)·a(-2)·a(-1);其次是红藻门有11种,生物量、固碳量和生产力分别为17 547 g·m(-1);其次是红藻门有11种,生物量、固碳量和生产力分别为17 547 g·m(-2),138 194 g·a(-2),138 194 g·a(-1),1 872 g·m(-1),1 872 g·m(-2)·a(-2)·a(-1);绿藻门有5种,生物量、固碳量和生产力分别为3 064 g·m(-1);绿藻门有5种,生物量、固碳量和生产力分别为3 064 g·m(-2),4 827 g·a(-2),4 827 g·a(-1),158 g·m(-1),158 g·m(-2)·a(-2)·a(-1)。受人类活动影响最小的博贺兰岛礁区域海藻生物量、固碳量和生产力均为最大。19种海藻中12种海藻TOC超过30%,分别为衫叶蕨藻Caulerpa taxifolia (M.Vahl) C. Agardh、囊状法囊藻Valonia utricularis(Roth)C. Ag.[Conterva utricularis]、网球藻Dictyosphaeria cavernosa(Forssk.) Boerg、珊瑚藻Corallina sp.、拟鸡毛菜Pterocladiella capillacea (Gmelin)Santelices et Hommersand、紫杉状海门冬Asparagopsis taxiformis (Delile)、茎刺藻Caulacanthus ustulatus (Mertens) Kütz、新角石藻Neogoniolithon sp.、叉节藻Amphiroa sp.、半叶马尾藻Sargassum hemiphyllum (Turn.) var. chinensis C. Ag.、囊藻Colpomenia sinuosa(Mert.exRoth)、羊栖菜Hizikiafusiforme(Harv.)Setch。岩礁带海水中的无机氮和无机磷含量分别在0.17~0.20mg·L(-1)。受人类活动影响最小的博贺兰岛礁区域海藻生物量、固碳量和生产力均为最大。19种海藻中12种海藻TOC超过30%,分别为衫叶蕨藻Caulerpa taxifolia (M.Vahl) C. Agardh、囊状法囊藻Valonia utricularis(Roth)C. Ag.[Conterva utricularis]、网球藻Dictyosphaeria cavernosa(Forssk.) Boerg、珊瑚藻Corallina sp.、拟鸡毛菜Pterocladiella capillacea (Gmelin)Santelices et Hommersand、紫杉状海门冬Asparagopsis taxiformis (Delile)、茎刺藻Caulacanthus ustulatus (Mertens) Kütz、新角石藻Neogoniolithon sp.、叉节藻Amphiroa sp.、半叶马尾藻Sargassum hemiphyllum (Turn.) var. chinensis C. Ag.、囊藻Colpomenia sinuosa(Mert.exRoth)、羊栖菜Hizikiafusiforme(Harv.)Setch。岩礁带海水中的无机氮和无机磷含量分别在0.17~0.20mg·L(-1)和0. 007~0. 018 mg·L(-1)和0. 007~0. 018 mg·L(-1)之间,距岩礁带断面4 km左右海域的4个相应站位IN和IP含量分别在0.18~0.22mg·L(-1)之间,距岩礁带断面4 km左右海域的4个相应站位IN和IP含量分别在0.18~0.22mg·L(-1)和0.016~0.022mg·L(-1)和0.016~0.022mg·L(-1)间,均略高于岩礁区相应站位。大型海藻的生物量与岩礁带无机氮和无机磷间Pearson相关系数分别为-0.248和-0.155。【结论】19种大型海藻在硇洲岛岩礁带海区生态环境下具有良好的生长适应性,固碳能力强,对氮磷具有吸收作用。
关键词(KeyWords): 硇洲岛岩礁带;海藻场;大型海藻;固碳;氮磷吸收
基金项目(Foundation): 国家海洋公益性行业科研专项(201105008-5);国家海洋公益性行业科研专项(201505027);; 广东海洋大学创新强校工程科研项目(GDOU2016050212);; 海洋有机地球化学与气候环境变化研究(R17001)
作者(Authors): 刘耀谦;张才学;孙省利;孙洁;杨国欢;
参考文献(References):
- [1] FLETCHER S E M, GRUBER N, JACOBSON A R, et al.Inverse estimates of anthropogenic CO2 uptake, transport,and storage by the ocean[J]. Global Biogeochemical Cycles, 2006, 20(2):359-377.
- [2] JACOBSON A R, MIKALLOFF F S E, NICOLAS G, et al. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide:1. Methods and global-scale fluxes[J].Global Biogeochemical Cycles, 2007, 21(1):5252-5252.
- [3] BEARDALL J, BEER S, RAVEN J. Biodiversity of marine plants in an era of climate change, some predictions based on physiological performance[J].Botanica Marina, 1998, 41(1-6):113-124.
- [4] WARWICK R M. A new method for detecting pollution effects on marine macrobenthic communities[J]. Marine Biology, 1986, 92(4):557-562.
- [5] JACKSON G A. Modelling the growth and harvest yield of the giant kelp Macrocystis pyrifera[J]. Marine Biology,1987, 95(4):611-624.
- [6] MURAOKA D. Seaweed resources as a source of carbon fixation[J]. Bulletin, 2004, 1:59-63.
- [7]谢晓东,蒋蓉芳,宋伟民.蝎形引物PCR快速检测环境水样中沙门菌方法研究[J].环境与职业医学, 2003,20(2):115-119.
- [8]谢淑娟,匡耀求,黄宁生.中国发展碳汇农业的主要路径与政策建议[J].中国人口·资源与环境, 2010,20(12):46-51.
- [9]何英,张小全,刘云仙.中国森林碳汇交易市场现状与潜力[J].林业科学, 2007, 43(7):106-111.
- [10]李昂,刘存歧,董梦荟,等.河北省海水养殖贝类与藻类碳汇能力评估[J].南方农业学报, 2013, 7(7):1201-1204.
- [11]冯子慧,孟阳,陆巍,等.绿潮藻浒苔光合固碳与防治海水酸化的作用I.光合固碳与海水pH值提高速率研究[J].海洋学报, 2012, 35(3):285-291.
- [12] ALPERT S B, SPENCER D F, HIDY G. Biospheric options for mitigating atmospheric carbon dioxide levels[J]. Energy Conversion&Management, 1992, 33(s5–8):729-736.
- [13]岳冬冬.海带养殖结构变动与海藻养殖碳汇量核算的情景分析[J].福建农业学报, 2012, 27(4):432-436.
- [14]江志兵,曾江宁,陈全震,等.大型海藻对富营养化海水养殖区的生物修复[J].海洋开发与管理, 2006,23(4):59-65.
- [15]李美真,詹冬梅,丁刚,等.人工藻场的生态作用、研究现状及可行性分析[J].渔业现代化, 2007(1):20-22.
- [16]林贞贤,汝少国,杨宇峰.大型海藻对富营养化海洋生物修复的研究进展[J].海洋湖沼通报, 2006(4):128-134.
- [17]马佳莹,戴家伟,胡芳露,等.大型海藻对富营养化海水养殖区的修复[J].农村经济与科技, 2006, 27(11):6-7.
- [18]杨宇峰,宋金明,林小涛,等.大型海藻栽培及其在近海环境的生态作用[J].海洋环境科学, 2005, 24(2):77-80.
- [19]林会洁,秦传新,黎小国,等.柘林湾海洋牧场不同功能区食物网结构[J].水产学报, 2018, 42(7):1026-1039.
- [20]徐珊楠.大型海藻栽培对富营养化海区的生态修复功能研究[D].上海:上海海洋大学, 2008.
- [21] RITSCHARD R L. Marine algae as a CO2 sink[J]. Water Air&Soil Pollution, 1992, 64(1/2):289-303.
- [22] SOUSA W P. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community[J]. Ecol Monogr, 1979, 49(3):227-254.
- [23]周毅,杨红生,刘石林,等.烟台四十里湾浅海养殖生物及附着生物的化学组成、有机净生产量及其生态效应[J].水产学报, 2002, 26(1):21-27.
- [24]张继红,方建光,唐启升.中国浅海贝藻养殖对海洋碳循环的贡献[J].地球科学进展, 2005, 20(3):359-365.
- [25]李岩,付秀梅.中国大型海藻资源生态价值分析与评估[J].中国渔业经济, 2015, 33(2):57-62.
- [26]李娇,关长涛,公丕海,等.人工鱼礁生态系统碳汇机理及潜能分析[J].渔业科学进展, 2013, 34(1):65-69.
- [27]纪建悦,王萍萍.我国海水养殖藻类碳汇能力及影响因素研究[J].中国海洋大学学报, 2014(4):17-20.
- [28]权伟,应苗苗,康华靖,等.中国近海海藻养殖及碳汇强度估算[J].水产学报, 2014, 38(4):510-515.
- [29] NALDI M, PIERLUIGI V. Nitrate uptake and storage in the seaweed Ulva rigida C. Agardh in relation to nitrate availability and thallus nitrate content in a eutrophic coastal lagoon(Sacca di Goro, Po River Delta, Italy)[J].Journal of Experimental Marine Biology and Ecology,2002, 269(1):65-83.
- [30] SKRTPTSOVA A V, MIROSHNIKOVA N V. Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture(IMTA)[J]. Bioresource Technology, 2011, 102(3):3149-3154.
- [31] HAGLUND K, PEDERSEN M. Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake,co-cultivation with rainbow trout and epiphyte control[J].Journal of Applied Phycology, 1993, 5(3):271-284.
- [32] NELSON S G, GLEMN E P, CONN J, et al. Cultivation of Gracilaria parvispora(Rhodophyta)in shrimp farm effluent ditches and floating cages in Hawaii:a two phase polyculture system[J]. Aquaculture, 2001, 193(3):239-248.