海工混凝土微孔隙环境中钢筋的腐蚀电化学行为Electrochemical Behavior of Steel Corrosion in Microporous Environment of Marine Concrete
文成;田玉琬;王贵;胡杰珍;
摘要(Abstract):
【目的】钢筋的氯致腐蚀问题是限制海工混凝土结构耐久性的主要因素,本研究旨在探索钢筋在氯离子环境中的真实腐蚀机理,为海工混凝土耐久性评估提供理论基础。【方法】设计新型微溶液电解池,模拟海工混凝土微孔隙环境,采用循环伏安、极化曲线和交流阻抗谱方法研究该环境中钢筋的腐蚀速率和电化学规律,并与传统本体溶液、实际混凝土结构中的钢筋腐蚀作对比。【结果】微溶液和本体溶液中钢筋的腐蚀热力学行为一致;溶液体积大于1 mL时钢筋腐蚀动力学行为变化不大,但溶液体积低至100μL后钢筋腐蚀速率大幅下降;微溶液中钢筋溶出的Fe2+离子相对较多,导致阳极反应的平衡电极电位正移、阳极极化阻滞作用加强,腐蚀速率下降。【结论】传统本体溶液电化学测试方法评估钢筋腐蚀速率时出现过评估,而新型微溶液电解池与实际钢筋腐蚀动力学相关性更好。
关键词(KeyWords): 钢筋;腐蚀速率;孔隙;微溶液;电化学
基金项目(Foundation): 国家自然科学基金(51801033)
作者(Authors): 文成;田玉琬;王贵;胡杰珍;
参考文献(References):
- [1]王胜年,曾俊杰,范志宏.基于长期暴露试验的海工高性能混凝土耐久性分析[J].土木工程学报, 2021, 54(10):82-89.
- [2]吴建华,赵永韬.钢筋混凝土的腐蚀监测/检测[J].腐蚀与防护, 2003(10):421-427; 431.
- [3]乔宏霞,巩位,王鹏辉,等.硫酸盐环境氯氧镁水泥混凝土中钢筋防护试验[J].西南交通大学学报, 2017,52(2):247-253.
- [4] BOCKRIS J O'M, REDDY A K N, GAMBOA-ALDECO M. Modern electrochemistry 2A[M]. New York:Kluwer Academic Publishers, 2000.
- [5] DICKINSON E J F, HINDS G. The butler-Volmer equation for polymer electrolyte membrane fuel cell(PEMFC)electrode kinetics:a critical discussion[J]. Journal of the Electrochemical Society, 2019, 166(4):F221-F231.
- [6]徐行军.基于CT扫描试验的透水混凝土孔隙分布特征研究[J].硅酸盐通报, 2019, 38(11):3670-3674.
- [7] ANDRADE C, ALONSO C. Corrosion rate monitoring in the laboratory and on-site[J]. Construction and Building Materials, 1996, 10(5):315-328.
- [8] ZHI F F, JIANG L H, JIN M, et al. Inhibition effect and mechanism of polyacrylamide for steel corrosion in simulated concrete pore solution[J]. Construction and Building Materials, 2020, 259:120425-120429.
- [9] CAI Y M, ZHENG H B, HU X, et al. Comparative studies on passivation and corrosion behaviors of two types of steel bars in simulated concrete pore solution[J].Construction and Building Materials, 2021, 266(Part A):12971-12979.
- [10] GROMBONI M F, SALES A, REZENDE M D A M, et al.Impact of agro-industrial waste on steel corrosion susceptibility in media simulating concrete pore solutions[J]. Journal of Cleaner Production, 2021, 284:124697-124705.
- [11] HUSSAIN R R, AL-NEGHEIMISH A, ALHOZAIMY A,et al. Corrosion characteristics of vanadium micro-alloyed steel reinforcement bars exposed in concrete environments and industrially polluted atmosphere[J].Cement and Concrete Composites, 2020, 113:103728-103741.
- [12] WANG D Q, MING J, SHI J J. Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole[J]. Corrosion Science,2020, 174:108830-108841.
- [13] GARCéS P, SAURA P, ZORNOZA E, et al. Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution[J]. Corrosion Science,2011, 53(12):3991-4000.
- [14] ZHAO Y Z, PAN T, YU X T, et al. Corrosion inhibition efficiency of triethanolammonium dodecylbenzene sulfonate on Q235 carbon steel in simulated concrete pore solution[J]. Corrosion Science, 2019, 158:108097-108108.
- [15] LIU X H, MACDONALD D D, WANG M, et al. Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution[J]. Electrochimica Acta, 2021, 366:137437-137447.
- [16] TORBATI-SARRAF H, POURSAEE A. Study of the passivation of carbon steel in simulated concrete pore solution using scanning electrochemical microscope(SECM)[J]. Materialia, 2018, 2:19-22.
- [17] VERBRUGGEN H, BAERT K, TERRYN H, et al.Molybdate-phosphate conversion coatings to protect steel in a simulated concrete pore solution[J]. Surface and Coatings Technology, 2019, 361:280-291.
- [18] WU M, MA H F, SHI J J. Enhanced corrosion resistance of reinforcing steels in simulated concrete pore solution with low molybdate to chloride ratios[J]. Cement and Concrete Composites, 2020, 110:103589-103599.
- [19]蒋俊,张俊喜,鲁进亮,等.钢筋在再碱化过程中的电化学行为研究[J].化学学报, 2011, 69(20):2347-2352.
- [20]张佶,屈文俊,朱鹏.迁移型阻锈剂对混凝土中钢筋的长期影响[J].建筑科学与工程学报, 2020, 37(6):117-126.
- [21] CABRINI M, LORENZI S, PASTORE T. Cyclic voltammetry evaluation of inhibitors for localised corrosion in alkaline solutions[J]. Electrochimica Acta,2014, 124:156-164.
- [22] MING J, WU M, SHI J J. Passive film modification by concrete carbonation:Re-visiting a corrosion-resistant steel with Cr and Mo[J]. Cement and Concrete Composites, 2021, 123:104178-104193.
- [23]田玉琬.海工用高强耐蚀钢筋的腐蚀机理及阻锈剂研究[D].北京:北京科技大学, 2021.
- [24] DUBUISSON E, LAVIE P, DALARD F, et al. Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet[J]. Electrochemistry Communications, 2006, 8(6):911-915.
- [25] JIANG J, WANG J, LU Y H, et al. Effect of length of gas/liquid/solid three-phase boundary zone on cathodic and corrosion behavior of metals[J]. Electrochimica Acta,2009, 54(5):1426-1435.
- [26] LI S X, HIHARA L H. Atmospheric-corrosion electrochemistry of NaCl droplets on carbon steel[J].Journal of the Electrochemical Society, 2012, 159(11):C461-C468.
- [27]程庆利,张卫华,陶彬.用三电极体系研究铜在微液滴下的电化学腐蚀[J].物理化学学报, 2015, 31(7):1345-1350.
- [28] HUSSAIN R R. Effect of moisture variation on oxygen consumption rate of corroding steel in chloride contaminated concrete[J]. Cement and Concrete Composites, 2011, 33(1):154-161.
- [29]于阳,卢琳,李晓刚.微区电化学技术在薄液膜大气腐蚀中的应用[J].工程科学学报, 2018, 40(6):649-657.