两个超强连续热带气旋对阿拉伯海海表温度和叶绿素a影响Effects of Two Severe and Successive Tropical Cyclones on the Sea Surface Temperature and Chlorophyll a in the Arabian Sea
徐华兵;莫镇廷;杨丰成;单雨才;付东洋;
摘要(Abstract):
【目的】研究两个连续的热带气旋(tropical cyclones,TC)与中尺度涡共同作用下对阿拉伯海上层环境的影响。【方法】基于遥感、Bio-Argo 浮标数据和 HYCOM 模式数据,探讨 TC 引起的混合、埃克曼抽吸和移速等因素对海表降温和浮游植物变化的影响机制。【结果与结论】TC Chapala(2015 年,4 级,萨菲尔-辛普森飓风等级)过境后,四个中尺度涡区域中降温最明显的区域(平均最大降温幅度达 3 ℃)发生在 TC 移速较慢(≤4 m·s(-1))时经过的气旋涡海域。由于第一个超强TC Chapala造成的强烈的混合和海表显著降温,强度弱于TC Chapala的TC Megh(2015年,3 级)很难造成更深的混合,低温水体无法带到表层,抑制了第二次降温,但海表温度缓慢恢复,持续的低温长达两周,远比单个 TC 造成的降温时间长。在两个 TC 作用下,阿拉伯海海表叶绿素 a 浓度增加明显,其中三个气旋涡区域最显著。TC Chapala 较慢经过气旋涡区域,使得该区域平均叶绿素 a 浓度增加到 0.93 mg·m(-1))时经过的气旋涡海域。由于第一个超强TC Chapala造成的强烈的混合和海表显著降温,强度弱于TC Chapala的TC Megh(2015年,3 级)很难造成更深的混合,低温水体无法带到表层,抑制了第二次降温,但海表温度缓慢恢复,持续的低温长达两周,远比单个 TC 造成的降温时间长。在两个 TC 作用下,阿拉伯海海表叶绿素 a 浓度增加明显,其中三个气旋涡区域最显著。TC Chapala 较慢经过气旋涡区域,使得该区域平均叶绿素 a 浓度增加到 0.93 mg·m(-3)(原始水平的 4.6倍)。而第二个 TC Megh 过境后,海表叶绿素 a 浓度持续增加,在近岸附近的气旋涡区域平均叶绿素 a 浓度达到 1.48mg·m(-3)(原始水平的 4.6倍)。而第二个 TC Megh 过境后,海表叶绿素 a 浓度持续增加,在近岸附近的气旋涡区域平均叶绿素 a 浓度达到 1.48mg·m(-3),浮游植物在 3 周后才恢复到 TC Chapala 过境前水平。虽然两个 TC 强度超过 3 级,但是在反气旋涡区域海表降温和叶绿素 a 浓度变化均不显著,主要原因是反气旋涡造成较厚的混合层和下降流抵消了 TC 引起的混合和上升流作用。此外,Bio-Argo 观测结果显示连续 TC 的过境造成了阿拉伯海低氧区次表层溶解氧的降低。阿拉伯海上层海洋对 TC 的响应,不仅取决于 TC 自身的风速、移速和埃克曼抽吸,也受海洋上层环境的影响,特别是中尺度涡的影响。
关键词(KeyWords): 连续热带气旋;海表温度;叶绿素a浓度;中尺度涡
基金项目(Foundation): 国家自然科学基金项目(42106148);; 广东省教育厅青年创新人才项目(2021KQNCX028);; 广东海洋大学科研启动经费资助项目(R20008);; 湛江市创新创业团队引育“领航计划”项目(211207157080994)
作者(Authors): 徐华兵;莫镇廷;杨丰成;单雨才;付东洋;
参考文献(References):
- [1] ZHAO H, TANG D, WANG Y. Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea[J]. Marine Ecology Progress Series, 2008, 365:57-65.
- [2] SENGUPTA D, GODDALEHUNDI B R, ANITHA D S.Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal[J]. Atmospheric Science Letters, 2008, 9(1):1-6.
- [3] MA Z H, FEI J F, LIU L, et al. An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities[J]. Monthly Weather Review, 2017, 145(4):1181-1201.
- [4] WALKER N D, LEBEN R R, BALASUBRAMANIAN S.Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the gulf of Mexico[J]. Geophysical Research Letters, 2005, 32(18):1-5.
- [5] CHACKO N. Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal:Bio-Argo subsurface observations[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 124:66-72.
- [6] XU H B, TANG D L, SHENG J Y, et al. Study of dissolved oxygen responses to tropical cyclones in the Bay of Bengal based on Argo and satellite observations[J]. The Science of the Total Environment, 2019, 659:912-922.
- [7] VIDYA P J, DAS S, MURALI R M. Contrasting Chl-a responses to the tropical cyclones Thane and Phailin in the Bay of Bengal[J]. Journal of Marine Systems, 2017, 165:103-114.
- [8] YE H J, KALHORO M A, SUN J, et al. Chlorophyll blooms induced by tropical cyclone vardah in the bay of Bengal[J]. Indian Journal of Geo-Marine Sciences, 2018,47(7):1383-1390.
- [9] GANGULY D, SURYANARAYANA K, RAMAN M.Cyclone ockhi induced upwelling and associated changes in biological productivity in Arabian Sea[J]. Marine Geodesy, 2021, 44(1):70-89.
- [10] MUNI KRISHNA K. Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea[J].Advances in Space Research, 2016, 57(10):2115-2120.
- [11] NAIK H, NAQVI S W A, SURESH T, et al. Impact of a tropical cyclone on biogeochemistry of the central Arabian Sea[J]. Global Biogeochemical Cycles, 2008,22(3):1-11.
- [12] SUBRAHMANYAM B, RAO K H, SRINIVASA RAO N,et al. Influence of a tropical cyclone on chlorophyll-a concentration in the Arabian Sea[J]. Geophysical Research Letters, 2002, 29(22):22-1.
- [13] MURAKAMI H, VECCHI G A, UNDERWOOD S.Increasing frequency of extremely severe cyclonic storms over the Arabian Sea[J]. Nature Climate Change, 2017, 7(12):885-889.
- [14] WU R H, LI C Y. Upper Ocean response to the passage of two sequential typhoons[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 132:68-79.
- [15] AVILA-ALONSO D, BAETENS J M, CARDENAS R, et al. Oceanic response to the consecutive Hurricanes Dorian and Humberto(2019)in the Sargasso Sea[J]. Natural Hazards and Earth System Sciences, 2021, 21(2):837-859.
- [16]王同宇,张书文,陈法锦,等.西北太平洋上层海洋对连续多个台风的响应[J].广东海洋大学学报, 2019,39(6):62-74.
- [17] WANG T Y, ZHANG S W, CHEN F J, et al. Influence of sequential tropical cyclones on phytoplankton blooms in the northwestern South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(1):14-25.
- [18] BARANOWSKI D B, FLATAU P J, CHEN S, et al.Upper Ocean response to the passage of two sequential typhoons[J]. Ocean Science, 2014, 10(3):559-570.
- [19] NING J, XU Q, FENG T, et al. Upper Ocean response to two sequential tropical cyclones over the northwestern Pacific Ocean[J]. Remote Sensing, 2019, 11(20):2431.
- [20] ZHANG H, LIU X H, WU R H, et al. Ocean response to successive typhoons Sarika and Haima(2016)based on data acquired via multiple satellites and moored array[J].Remote Sensing, 2019, 11(20):2360.
- [21] JIN W F, LIANG C J, HU J Y, et al. Modulation effect of mesoscale eddies on sequential typhoon-induced oceanic responses in the South China Sea[J]. Remote Sensing,2020, 12(18):3059.
- [22] YE H J, SHENG J Y, TANG D L, et al. Storm-induced changes in pCO2 at the sea surface over the northern South China Sea during Typhoon Wutip[J]. Journal of Geophysical Research:Oceans, 2017, 122(6):4761-4778.
- [23] LIN I I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean[J]. Journal of Geophysical Research:Oceans, 2012, 117(C3):1-15.
- [24] MA Z H, FEI J F, HUANG X G, et al. Modulating effects of mesoscale oceanic eddies on sea surface temperature response to tropical cyclones over the western north Pacific[J]. Journal of Geophysical Research:Atmospheres,2018, 123(1):367-379.
- [25] LI J G, ZHANG H, LIU S S, et al. The response and feedback of ocean mesoscale eddies to four sequential typhoons in 2014 based on multiple satellite observations and Argo floats[J]. Remote Sensing, 2021, 13(19):3805.
- [26] XU H B, TANG D L, LIU Y P, et al. Dissolved oxygen responses to tropical cyclones “Wind Pump” on pre-existing cyclonic and anticyclonic eddies in the Bay of Bengal[J]. Marine Pollution Bulletin, 2019, 146:838-847.