哈维弧菌flhF和CU052_26825缺失株的构建及其生物学特性Deletion Mutant Construction and Biological Characteristics of Gene flhF and CU052_ 26825 in Vibrio harveyi
邓益琴;张亚秋;林梓阳;冯娟;程长洪;马红玲;刘广鑫;苏友禄;
摘要(Abstract):
【目的】研究哈维弧菌(Vibrioharveyi)345的GTP结合蛋白编码基因flhF和未知功能基因CU052_26825的生物学功能。【方法】利用同源重组技术构建V. harveyi 345的flhF和CU052_26825的缺失突变株,比较野生株和突变株的生长、运动性、胞外酶活性、耐药性等生物学特性以及对花鲈(Lateolabraxjaponicus)的毒性。【结果】基因flhF和CU052_26825的缺失均不影响菌株的生长、运动性、胞外蛋白酶活性、对H2O2和Cu2+的压力感应、对铁的吸收利用、对大多数被测抗生素的抗性以及对花鲈的毒性;但flhF和CU052_26825缺失后对氯霉素和氟苯尼考两种氯霉素类抗生素均更加敏感。此外,flhF缺失后,细菌生物膜形成能力显著增强。【结论】flhF和CU052_26825均参与调控哈维弧菌对氯霉素类抗生素的耐药性,flhF还参与调控哈维弧菌生物膜形成。
关键词(KeyWords): 哈维弧菌;基因敲除;flhF;CU052_26825;生物学特性;氯霉素类耐药性
基金项目(Foundation): 国家自然科学基金(31902415);; 中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助(2022GH03);中国水产科学研究院基本科研业务费专项资金(2020XT0407);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助(2020TS04);; 国家重点研发计划资助(2019YFD0900105);; 广东省自然科学基金(2019A1515011833)
作者(Authors): 邓益琴;张亚秋;林梓阳;冯娟;程长洪;马红玲;刘广鑫;苏友禄;
参考文献(References):
- [1] SHEN G M, SHI C Y, FAN C, et al. Isolation, identification and pathogenicity of Vibrio harveyi, the causal agent of skin ulcer disease in juvenile hybrid groupers Epinephelus fuscoguttatus×Epinephelus lanceolatus[J]. Journal of Fish Diseases, 2017, 40(10):1351-1362.
- [2] XU X D, LIU K F, WANG S F, et al. Identification of pathogenicity, investigation of virulent gene distribution and development of a virulent strain-specific detection PCR method for Vibrio harveyi isolated from Hainan Province and Guangdong Province, China[J]. Aquaculture,2017, 468:226-234.
- [3] SANTOS L, RAMOS F. Antimicrobial resistance in aquaculture:Current knowledge and alternatives to tackle the problem[J]. International Journal of Antimicrobial Agents, 2018, 52(2):135-143.
- [4] HE Y, JIN L L, SUN F J, et al. Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from fresh shrimps in Shanghai fish markets, China[J]. Environmental Science and Pollution Research, 2016, 23(15):15033-15040.
- [5] DENG Y Q, XU L W, CHEN H X, et al. Prevalence,virulence genes, and antimicrobial resistance of Vibrio species isolated from diseased marine fish in South China[J]. Scientific Reports, 2020, 10:14329.
- [6] SADAT A, EL-SHERBINY H, ZAKARIA A, et al.Prevalence, antibiogram and virulence characterization of Vibrio isolates from fish and shellfish in Egypt:a possible zoonotic hazard to humans[J]. Journal of Applied Microbiology, 2021, 131(1):485-498.
- [7] MAZZANTINI D, CELANDRONI F, SALVETTI S, et al.FlhF is required for swarming motility and full pathogenicity of Bacillus cereus[J]. Frontiers in Microbiology, 2016, 7:1644.
- [8] KONKEL M E, TILLY K. Temperature-regulated expression of bacterial virulence genes[J]. Microbes and Infection, 2000, 2(2):157-166.
- [9] DENG Y Q, XU H D, SU Y L, et al. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis[J]. BMC Genomics, 2019, 20(1):761.
- [10] VAL M E, SKOVGAARD O, DUCOS-GALAND M, et al.Genome engineering in Vibrio cholerae:a feasible approach to address biological issues[J]. PLoS Genetics,2012, 8(1):e1002472.
- [11] LIU J X, ZHAO Z, DENG Y Q, et al. Complete genome sequence of Vibrio campbellii LMB 29 isolated from red drum with four native megaplasmids[J]. Frontiers in Microbiology, 2017, 8:2035.
- [12] LE ROUX F, BINESSE J, SAULNIER D, et al.Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector[J]. Applied and Environmental Microbiology, 2007, 73(3):777-784.
- [13] NGUYEN A N, DISCONZI E, CHARRIèRE G M, et al.csrB gene duplication drives the evolution of redundant regulatory pathways controlling expression of the major toxic secreted metalloproteases in Vibrio tasmaniensis LGP32[J]. m Sphere, 2018, 3(6):e00582-18.DOI:10.1128/msphere.00582-18
- [14] ZHANG Y Q, DENG Y Q, FENG J, et al. CqsA inhibits the virulence of Vibrio harveyi to the pearl Gentian grouper(♀Epinephelus fuscoguttatus×♂Epinephelus lanceolatus)[J]. Aquaculture, 2021, 535:736346.
- [15]张亚秋,邓益琴,冯娟,等.哈维弧菌vhh基因缺失株的构建及其相关生物学特性研究[J].南方水产科学,2020, 16(2):43-53.
- [16]吴金军.华南海水鱼类网箱养殖区耐药菌和耐药基因研究[D].上海:上海海洋大学, 2019.
- [17] CLSI. Performance standards for antimicrobial susceptibility testing[R]. CLSI supplement M100.Clinical and Laboratory Standards Institute, 2019.
- [18]张亚秋.哈维弧菌假定毒力基因的筛选及功能研究[D].上海:上海海洋大学, 2020.
- [19]李洋,李强,张显昱.哈维弧菌及其主要致病因子的研究进展[J].中国农业科技导报, 2014, 16(4):159-166.
- [20]贝蕾,苏友禄,赵超,等.哈维弧菌rbsB基因的克隆与表达[J].南方水产科学, 2018, 14(2):75-82.
- [21]孙铂光.哈维氏弧菌VHH溶血素作用机理的研究[D].青岛:中国海洋大学, 2009.
- [22]郝贵杰,沈锦玉,潘晓艺,等.哈维氏弧菌GYC1108-1胞外蛋白酶的制备及免疫原性研究[J].渔业科学进展,2010, 31(3):107-112.
- [23] GU H, REN D C. Materials and surface engineering to control bacterial adhesion and biofilm formation:a review of recent advances[J]. Frontiers of Chemical Science and Engineering, 2014, 8(1):20-33.
- [24] MAH T F C, O’TOOLE G A. Mechanisms of biofilm resistance to antimicrobial agents[J]. Trends in Microbiology, 2001, 9(1):34-39.
- [25] GUTTENPLAN S B, KEARNS D B. Regulation of flagellar motility during biofilm formation[J]. FEMS Microbiology Reviews, 2013, 37(6):849-871.
- [26] KIM J S, PARK C, KIM Y J. Role of flgA for flagellar biosynthesis and biofilm formation of Campylobacter jejuni NCTC11168[J]. Journal of Microbiology and Biotechnology, 2015, 25(11):1871-1879.
- [27] CORREA N E, PENG F, KLOSE K E. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy[J]. Journal of Bacteriology, 2005, 187(18):6324-6332.
- [28] MURRAY T S, KAZMIERCZAK B I. FlhF is required for swimming and swarming in Pseudomonas aeruginosa[J].Journal of Bacteriology, 2006, 188(19):6995-7004.
- [29] GREEN J C D, KAHRAMANOGLOU C, RAHMAN A,et al. Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein[J]. Journal of Molecular Biology,2009, 391(4):679-690.
- [30] GAO T, SHI M M, JU L L, et al. Investigation into FlhFG reveals distinct features of FlhF in regulating flagellum polarity in Shewanella oneidensis[J]. Molecular Microbiology, 2015, 98(3):571-585.
- [31] BALABAN M, JOSLIN S N, HENDRIXSON D R. FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni[J]. Journal of Bacteriology, 2009,191(21):6602-6611.
- [42] LóPEZ-SáNCHEZ A, LEAL-MORALES A,JIMéNEZ-DíAZ L, et al. Biofilm formation-defective mutants in Pseudomonas putida[J]. FEMS Microbiology Letters, 2016, 363(13):fnw127.
- [33] NAVARRETE B, LEAL-MORALES A, SERRANO-RON L, et al. Transcriptional organization, regulation and functional analysis of flhF and fleN in Pseudomonas putida[J]. PLoS One, 2019, 14(3):e0214166.DOI:10.1371/journal.pone.0214166
- [34]任方哲.空肠弯曲菌FlhF调节鞭毛合成分子机制及其对细菌毒力的影响分析[D].扬州:扬州大学, 2019.
- [35] KUSUMOTO A, KAMISAKA K, YAKUSHI T, et al.Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus[J]. Journal of Biochemistry,2006, 139(1):113-121.
- [36] MO W Y, CHEN Z T, LEUNG H M, et al. Application of veterinary antibiotics in China’s aquaculture industry and their potential human health risks[J]. Environmental Science and Pollution Research, 2017, 24(10):8978-8989.
- [37]杜向党,阎若潜,沈建忠.氯霉素类药物耐药机制的研究进展[J].动物医学进展, 2004, 25(2):27-29.
- [38] DORMAN C J, FOSTER T J, SHAW W V. Nucleotide sequence of the R26 chloramphenicol resistance determinant and identification of its gene product[J].Gene, 1986, 41(2/3):349-353.
- [39] BISSONNETTE L, CHAMPETIER S, BUISSON J P, et al.Characterization of the nonenzymatic chloramphenicol resistance(cmlA)gene of the In4 integron of Tn1696:similarity of the product to transmembrane transport proteins[J]. Journal of Bacteriology, 1991, 173(14):4493-4502.
- [40] GEORGE A M, HALL R M. Efflux of chloramphenicol by the CmlA1 protein[J]. FEMS Microbiology Letters, 2002,209(2):209-213.
- [41] SAMS R A. Florfenicol:Chemistry and metabolism of a novel broad-spectrum antibiotic[J]. Tieraerztliche Umschau, 1995, 50(10):703-707.
- [42] KIM E, AOKI T. Sequence analysis of the florfenicol resistance gene encoded in the transferable R-plasmid of a fish pathogen, Pasteurella piscicida[J]. Microbiology and Immunology, 1996, 40(9):665-669.
- [43] KEHRENBERG C, SCHWARZ S. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(2):615-618.
- [44] DAI L, WU C M, WANG M G, et al. First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces[J].Antimicrobial Agents and Chemotherapy, 2010, 54(9):3953-3955.
- [45] DAVIES D. Understanding biofilm resistance to antibacterial agents[J]. Nature Reviews Drug Discovery,2003, 2(2):114-122.
- [46] WALTERS M C III, ROE F, BUGNICOURT A, et al.Contributions of antibiotic penetration, oxygen limitation,and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin[J].Antimicrobial Agents and Chemotherapy, 2003, 47(1):317-323.
- [47] MIKKELSEN H, BALL G, GIRAUD C, et al. Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators[J]. PLoS One,2009, 4(6):e6018. DOI:10.1371/journal.pone.0006018.