罗非鱼性别控制遗传育种研究进展A Review of on Genetic Sex Control Breeding of Tilapia
江东能,焦开智,张峻铭,彭友幸,杨空松,郑德锋,郭向召,石红娟,李广丽
摘要(Abstract):
罗非鱼全雄养殖可有效控制繁殖、提高养殖效率,遗传全雄罗非鱼(Genetically male tilapia, GMT)技术是性别控制的高效手段,但GMT技术培育的鱼苗雄性率不稳定。基因组学和基因编辑等技术已广泛应用于罗非鱼研究,极大地促进了罗非鱼性别决定与分化基础理论研究。分析导致XY个体性别逆转的可能因素,提出将来GMT技术研究的关键问题,探讨现代基因编辑技术在罗非鱼性别控制育种中可能应用。
关键词(KeyWords): 遗传全雄罗非鱼;性别控制;性别决定;基因编辑
基金项目(Foundation): 国家自然科学基金(31702326和32002367);; 中国博士后科学基金(2019M652829)
作者(Author): 江东能,焦开智,张峻铭,彭友幸,杨空松,郑德锋,郭向召,石红娟,李广丽
参考文献(References):
- [1] FAO. Food and Agriculture Organization of the United Nations(FAO). Cultured aquatic species information programme, Oreochromis niloticus(Linnaeus, 1758)[EB/OL].(2006-05-19)[2021-10-10]. http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en.
- [2] FAO. Food and Agriculture Organization of the United Nations(FAO). The state of world fisheries and aquaculture2020. Sustainability in action[EB/OL].[2021-10-10].https://doi.org/10.4060/ca9229zh.
- [3]代云云,袁永明,袁媛,等.中国罗非鱼产业供求分析[J].中国农学通报, 2021, 37(7):144-149.
- [4] Yá?EZ J M, JOSHI R, YOSHIDA G M. Genomics to accelerate genetic improvement in tilapia[J]. Animal Genetics, 2020, 51(5):658-674.
- [5] MAIR G C, ABUCAY J S, BEARDMORE J A, et al. Growth performance trials of genetically male tilapia(GMT)derived from YY-males in Oreochromis niloticus L.:on station comparisons with mixed sex and sex reversed male populations[J]. Aquaculture, 1995, 137(1/2/3/4):313-323.
- [6] SINGH A K. Introduction of modern endocrine techniques for the production of monosex population of fishes[J]. General and Comparative Endocrinology, 2013, 181:146-155.
- [7] MEGBOWON I, MOJEKWU T O. Tilapia sex reversal using methyl testosterone(MT)and its effect on fish, man and environment[J]. Biotechnology(Faisalabad), 2014, 13(5):213-216.
- [8] LOZANO C A, GJERDE B,?DEG?RD J, et al. Heritability estimates for male proportion in hybrids between Nile tilapia females(Oreochromis niloticus)and blue tilapia males(Oreochromis aureus)[J]. Aquaculture, 2014, 430:66-73.
- [9]杨永铨,张中英,林克宏,等.应用三系配套途径产生遗传上全雄莫桑比克罗非鱼[J].遗传学报, 1980, 7(3):241-246.
- [10] SUN Y L, JIANG D N, ZENG S, et al. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia(Oreochromis niloticus)[J]. Aquaculture, 2014, 433:19-27.
- [11] AVTALION R R, DON J. Sex-determining genes in tilapia:a model of genetic recombination emerging from sex ratio results of three generations of diploid gynogenetic Oreochromis aureus[J]. Journal of Fish Biology, 1990, 37(1):167-173.
- [12] MAIR G C, SCOTT A G, PENMAN D J, et al. Sex determination in the genus Oreochromis. 1. Sex reversal,gynogenesis and triploidy in Oreochromis niloticus(L.)[J].Theoretical and Applied Genetics, 1991, 82(2):144-152.
- [13] HARVEY S C, BOONPHAKDEE C, CAMPOS-RAMOS R,et al. Analysis of repetitive DNA sequences in the sex chromosomes of Oreochromis niloticus[J]. Cytogenetic and Genome Research, 2003, 101(3/4):314-319.
- [14]梅洁,桂建芳.鱼类性别异形和性别决定的遗传基础及其生物技术操控[J].中国科学:生命科学, 2014, 44(12):1198-1212.
- [15] BARDAKCI F. The use of random amplified polymorphic DNA(RAPD)markers in sex discrimination in Nile Tilapia,Oreochromis niloticus(Pisces:Cichlidae)[J]. Turkish Journal of Biology, 2000, 24(2):169-176.
- [16] LEE B Y, PENMAN D J, KOCHER T D. Identification of a sex-determining region in Nile tilapia(Oreochromis niloticus)using bulked segregant analysis[J]. Animal Genetics, 2003, 34(5):379-383.
- [17] LEE B Y, COUTANCEAU J P, OZOUF-COSTAZ C, et al.Genetic and physical mapping of sex-linked AFLP markers in Nile tilapia(Oreochromis niloticus)[J]. Marine Biotechnology(New York), 2011, 13(3):557-562.
- [18] EZAZ M T, HARVEY S C, BOONPHAKDEE C, et al.Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia(Oreochromis niloticus L.)[J]. Marine Biotechnology(New York), 2004, 6(5):435-445.
- [19] PALAIOKOSTAS C, BEKAERT M, KHAN M G Q, et al.Mapping and validation of the major sex-determining region in Nile tilapia(Oreochromis niloticus L.)using RAD sequencing[J]. PLoS One, 2013, 8(7):e68389.
- [20] ESHEL O, SHIRAK A, WELLER J I, et al. Fine-mapping of a locus on linkage group 23 for sex determination in Nile tilapia(Oreochromis niloticus)[J]. Animal Genetics, 2011,42(2):222-224.
- [21] ESHEL O, SHIRAK A, WELLER J I, et al. Linkage and physical mapping of sex region on LG23 of Nile tilapia(Oreochromis niloticus)[J]. G3 Genes|Genomes|Genetics,2012, 2(1):35-42.
- [22] ESHEL O, SHIRAK A, DOR L, et al. Identification of male-specific amh duplication, sexually differentially expressed genes and micro RNAs at early embryonic development of Nile tilapia(Oreochromis niloticus)[J].BMC Genomics, 2014, 15(1):774.
- [23] CHEN C H, LI B J, GU X H, et al. Marker-assisted selection of YY supermales from a genetically improved farmed tilapia-derived strain[J]. Zoological Research, 2019, 40(2):108-112.
- [24] CáCERES G, LóPEZ M E, CáDIZ M I, et al. Fine mapping using whole-genome sequencing confirms anti-müllerian hormone as a major gene for sex determination in farmed Nile tilapia(Oreochromis niloticus L.)[J]. G3 Genes|Genomes|Genetics, 2019, 9(10):3213-3223.
- [25] TASLIMA K, WEHNER S, TAGGART J B, et al. Sex determination in the GIFT strain of tilapia is controlled by a locus in linkage group 23[J]. BMC Genetics, 2020, 21(1):49.
- [26] SULTANA N, KHAN M G Q, HOSSAIN M A R, et al.Allelic segregation of sex-linked microsatellite markers in Nile tilapia(Oreochromis niloticus)and validation of inheritance in YY population[J]. Aquaculture Research,2020, 51(5):1923-1932.
- [27] SISSAO R, D'COTTA H, BAROILLER J F, et al.Mismatches between the genetic and phenotypic sex in the wild Kou population of Nile tilapia Oreochromis niloticus[J].Peer J, 2019, 7:e7709.
- [28] TRIAY C, CONTE M A, BAROILLER J F, et al. Structure and sequence of the sex determining locus in two wild populations of Nile tilapia[J]. Genes, 2020, 11(9):1017.
- [29] BAROILLER J F, D'COTTA H, BEZAULT E, et al. Tilapia sex determination:where temperature and genetics meet[J].Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2009, 153(1):30-38.
- [30] ZHAO Y, CHEN H J, WANG Y Y, et al. Gonad development examination of high-temperature-treated genetically female Nile tilapia[J]. Aquaculture, 2020, 515:734535.
- [31] KHATER E S G, ALI S A, MOHAMED W E. Effect of water temperature on masculinization and growth of Nile tilapia fish[J]. Journal of Aquaculture Research&Development, 2017, 8(9):507.
- [32] WESSELS S, H?RSTGEN-SCHWARK G. Selection experiments to increase the proportion of males in Nile tilapia(Oreochromis niloticus)by means of temperature treatment[J]. Aquaculture, 2007, 272:S80-S87.
- [33] LüHMANN L M, KNORR C, H?RSTGEN-SCHWARK G,et al. First evidence for family-specific QTL for temperature-dependent sex reversal in Nile tilapia(Oreochromis niloticus)[J]. Sexual Development, 2012, 6(5):247-256.
- [34] LEE B Y, HULATA G, KOCHER T D. Two unlinked loci controlling the sex of blue tilapia(Oreochromis aureus)[J].Heredity, 2004, 92(6):543-549.
- [35] WU X, ZHAO L, FAN Z, et al. Screening and characterization of sex-linked DNA markers and marker-assisted selection in blue tilapia(Oreochromis aureus)[J]. Aquaculture, 2021, 530:735934.https://doi.org/10.1016/j.aquaculture.2020.735934
- [36] CNAANI A, LEE B Y, ZILBERMAN N, et al. Genetics of sex determination in tilapiine species[J]. Sexual Development, 2008, 2(1):43-54.
- [37] GAMMERDINGER W J, CONTE M A, SANDKAM B A,et al. Characterization of sex chromosomes in three deeply diverged species of Pseudocrenilabrinae(Teleostei:Cichlidae)[J]. Hydrobiologia, 2019, 832(1):397-408.
- [38] TAO W J, CAO J M, XIAO H S, et al. A chromosome-level genome assembly of Mozambique tilapia(Oreochromis mossambicus)reveals the structure of sex determining regions[J]. Frontiers in Genetics, 2021, 12:796211.https://doi.org/10.3389/fgene.2021.796211
- [39] LEE B Y, LEE W J, STREELMAN J T, et al. A second-generation genetic linkage map of tilapia(Oreochromis spp.)[J]. Genetics, 2005, 170(1):237-244.
- [40] LIU F, SUN F, LI J, et al. A microsatellite-based linkage map of salt tolerant tilapia(Oreochromis mossambicus×Oreochromis spp.)and mapping of sex-determining loci[J].BMC Genomics, 2013, 14:58.
- [41]谭德阶.罗非鱼近缘种杂交系的建立及其性别连锁分子标记的筛选[D].重庆:西南大学, 2018.
- [42] CHEN J L, FAN Z, TAN D J, et al. A review of genetic advances related to sex control and manipulation in tilapia[J]. Journal of the World Aquaculture Society, 2018,49(2):277-291.
- [43] LI M H, SUN Y L, ZHAO J E, et al. A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus[J]. PLo S Genetics, 2015,11(11):e1005678.
- [44] CURZON A Y, SHIRAK A, DOR L, et al. A duplication of the Anti-Müllerian hormone gene is associated with genetic sex determination of different Oreochromis niloticus strains[J]. Heredity, 2020, 125(5):317-327.
- [45] LIU X, DAI S, WU J, et al.. Roles of anti-Müllerian hormone and its duplicates in sex determination and germ cell proliferation of Nile tilapia. Genetics, 2021, iyab237.https://doi.org/10.1093/genetics/iyab237
- [46] CONTE M A, CLARK F E, ROBERTS R B, et al. Origin of a giant sex chromosome[J]. Molecular Biology and Evolution, 2021, 38(4):1554-1569.
- [47] TAO W J, XU L H, ZHAO L, et al. High-quality chromosome-level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes[J].Molecular Ecology Resources, 2021, 21(2):543-560.
- [48] CURZON A Y, SHIRAK A, BENET-PERLBERG A, et al.Gene variant of barrier to autointegration factor 2(Banf2w)is concordant with female determination in cichlids[J].International Journal of Molecular Sciences, 2021, 22(13):7073.
- [49] BACHTROG D, MANK J E, PEICHEL C L, et al. Sex determination:why so many ways of doing it?[J]. PLo S Biology, 2014, 12(7):e1001899.
- [50] TAO W J, CONTE M A, WANG D S, et al. Network architecture and sex chromosome turnovers:do epistatic interactions shape patterns of sex chromosome replacement?[J]. Bio Essays:News and Reviews in Molecular, Cellular and Developmental Biology, 2020, 43(3):e2000161.
- [51] MAIR G C, ABUCAY J S, ABELLA T A, et al. Genetic manipulation of sex ratio for the large-scale production of all-male tilapia Oreochromis niloticus[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(2):396-404.
- [52] EZAZ M T, MYERS J M, POWELL S F, et al. Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia, Oreochromis niloticus L[J]. Aquaculture, 2004,232(1/2/3/4):205-214.
- [53] GENNOTTE V, MAFWILA KINKELA P, ULYSSE B, et al.Brief exposure of embryos to steroids or aromatase inhibitor induces sex reversal in Nile tilapia(Oreochromis niloticus)[J]. Journal of Experimental Zoology Part A:Ecological Genetics and Physiology, 2015, 323(1):31-38.
- [54]陳榮華,蔡添財,劉富光.超雄性(YY)尼羅吳郭魚之選育及單雄性魚苗量產的應用[J].水產研究, 2013, 21(2):69-82.
- [55]杨永铨,张海明,陈远生,等.尼罗罗非鱼新品种“鹭雄1号”的制种研究[J].淡水渔业, 2013, 43(2):92-95.
- [56]罗非鱼“粤闽1号”[J].中国水产, 2021(4):92-96.
- [57] SALIRROSAS D, LEON J, ARQUEROS-AVALOS M, et al.YY super males have better spermatic quality than XY males in red tilapia Oreochromis niloticus[J]. Scientia Agropecuaria, 2017, 8(4):349-355.
- [58]江东能,彭友幸,黄远青,等.基于天然XY雌鱼培育YY超雄尼罗罗非鱼的新方法[J].水产学报, 2020, 44(11):1862-1872.
- [59] JIANG D N, KUANG Z Y, YANG K S, et al. Polymorphism in a sex-linked DNA marker located on LG23 in Hainan strain of Nile tilapia(Oreochromis niloticus)[J]. Journal of the World Aquaculture Society, 2022, 53(1):205-223.
- [60]江东能. Gsdf和Wt1在罗非鱼性别分化和性腺发育中的功能研究[D].重庆:西南大学, 2016.
- [61] ZHENG S Q, LONG J, LIU Z L, et al. Identification and evolution of TGF-β signaling pathway members in twenty-four animal species and expression in tilapia[J].International Journal of Molecular Sciences, 2018, 19(4):1154.
- [62]龙娟,郑树清,王晓双,等. TGF-β信号通路在鱼类性别决定与分化中的作用[J].水产学报, 2020, 44(1):166-177.
- [63] JOSSO N, DI CLEMENTE N, GOUéDARD L.Anti-Müllerian hormone and its receptors[J]. Molecular and Cellular Endocrinology, 2001, 179(1/2):25-32.
- [64] YAN Y L, BATZEL P, TITUS T, et al. A hormone that lost its receptor:anti-müllerian hormone(AMH)in zebrafish gonad development and sex determination[J]. Genetics,2019, 213(2):529-553.
- [65] ZHANG Z W, WU K, REN Z Q, et al. Genetic evidence for Amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signaling through Bmpr2a receptor[J].Development(Cambridge, England), 2020, 147(22):dev189811.
- [66] CURZON A Y, SHIRAK A, ZAK T, et al. All-male production by marker-assisted selection for sex determining loci of admixed Oreochromis niloticus and Oreochromis aureus stocks[J]. Animal Genetics, 2021, 52(3):361-364.
- [67]柳兴永. Amh/Amhy在罗非鱼生殖中的功能研究与可育YY伪雌鱼的培育[D].重庆:西南大学, 2020.
- [68] LI M H, DAI S F, LIU X Y, et al. A detailed procedure for CRISPR/Cas9-mediated gene editing in tilapia[J].Hydrobiologia, 2021, 848(16):3865-3881..
- [69] LI M H, YANG H H, LI M R, et al. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs[J].Endocrinology, 2013, 154(12):4814-4825.
- [70] LI M H, YANG H H, ZHAO J E, et al. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9[J].Genetics, 2014, 197(2):591-599.
- [71] KHALIL K, ELAYAT M, KHALIFA E, et al. Generation of myostatin gene-edited channel catfish(Ictalurus punctatus)via zygote injection of CRISPR/Cas9 system[J]. Scientific Reports, 2017, 7:7301.
- [72] SUN Y, ZHENG G D, NISSA M, et al. Disruption of mstna and mstnb gene through CRISPR/Cas9 leads to elevated muscle mass in blunt snout bream(Megalobrama amblycephala)[J]. Aquaculture, 2020, 528:735597.
- [73] JIANG D N, YANG H H, LI M H, et al. Gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia[J]. Molecular Reproduction and Development, 2016, 83(6):497-508.
- [74] ZHANG X B, LI M R, MA H, et al. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia[J]. Endocrinology, 2017, 158(8):2634-2647.
- [75] LI M H, SUN L N, WANG D S. Roles of estrogens in fish sexual plasticity and sex differentiation[J]. General and Comparative Endocrinology, 2019, 277:9-16.
- [76] DAI S F, QI S S, WEI X Y, et al. Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia[J]. Development(Cambridge,England), 2021, 148(8):dev199380. https://doi.org/10.1242/dev.199380.
- [77] ZHAI G, SHU T T, CHEN K X, et al. Successful production of an all-female common carp(Cyprinus carpio L.)population using cyp17a1-deficient neomale carp[J].Engineering, 2021. DOI:10.1016/j.eng.2021.03.026.
- [78]周运迪,吴星星,赵海萍,等.青鳉foxl2基因敲除突变体的构建与表型分析[J].广东海洋大学学报, 2019, 39(2):20-30.
- [79]陈锦霖.翻译延伸因子e EF1A1b和42Sp50在罗非鱼配子发生中的功能研究[D].重庆:西南大学, 2018.
- [80] LIU X Y, XIAO H S, JIE M M, et al. Amh regulate female folliculogenesis and fertility in a dose-dependent manner through Amhr2 in Nile tilapia[J]. Molecular and Cellular Endocrinology, 2020, 499:110593.
- [81] YAN L X, FENG H W, WANG F L, et al. Establishment of three estrogen receptors(esr1, esr2a, esr2b)knockout lines for functional study in Nile tilapia[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2019, 191:105379.
- [82] TAO W J, SHI H J, YANG J, et al. Homozygous mutation of foxh1 arrests oogenesis causing infertility in female Nile tilapia[J]. Biology of Reproduction, 2019, 102(3):758-769.
- [83] JIANG D N, PENG Y X, LIU X Y, et al. Homozygous mutation of gsdf causes infertility in female Nile tilapia(Oreochromis niloticus)[J]. Frontiers in Endocrinology,2022. https://doi.org/10.3389/fendo.2022.813320.
- [84] WANG C X, LU B Y, LI T, et al. Nile tilapia:a model for studying teleost color patterns[J]. Journal of Heredity, 2021,112(5):469-484.