楚科奇陆坡流的海表时空特征Spatiotemporal Variation of Chukchi Slope Current at Surface
薛宇璇,李敏,王贵圆,谢玲玲
摘要(Abstract):
【目的】研究2002-2018年楚科奇海表层陆坡流的变化特征。【方法】利用多个卫星高度计融合的海表动力高度和地转流场数据产品,分析2002-2018年8-10月楚科奇海表层陆坡流的时空变化特征。【结果与结论】楚科奇海东北部陆坡流特征明显,研究区域内陆坡流的平均宽度为(41±11)km,平均最大流速为西向(0.15±0.06)m/s,最大流速处离90 m等深线(陆架坡折处)的平均距离为(63±14)km,且流径在向西过程中发生侧向摆动。该3个特征量在8-10月呈季节内变化,宽度主要为25~60 km,最大流速主要为0.06~0.24 m/s,最大流速所在位置距90 m等深线的距离主要为40~80 km,且宽度的最小值、最大流速以及最大流速位置距90 m等深线最小距离均出现在9月。8-10月研究区域陆坡流的3个平均特征量均呈现明显年际变化,2003年平均最大流速较弱且平均宽度最大,2011年和2017年平均最大流速较强且2017年平均宽度较小,这些年份北极海域和南部的阿留申群岛海域的气压及所引起的风场均明显不同。2006年前后陆坡流最大流速和偏东风之间的位相关系变化也体现风场对陆坡流的影响。
关键词(KeyWords): 楚科奇陆坡流;海表动力高度;空间分布;时间变化;年际变化
基金项目(Foundation): 广东海洋大学创新创业训练计划项目(CXXL2019152);广东海洋大学博士科研启动经费项目(R20022);; 广东省教育厅创新团队项目(2019KCXTF021);; 广东省冲一流专项资金项目(080503032101,231420003);; “全球变化与海气相互作用”专项国际合作项目(GASI-02-SCS-YGST2-02)
作者(Author): 薛宇璇,李敏,王贵圆,谢玲玲
参考文献(References):
- [1] WEINGARTNER T J, CAVALIERI D J, AAGAARD K, et al. Circulation, dense water formation, and outflow on the northeast Chukchi Shelf[J]. Journal of Geophysical Research:Oceans, 1998, 103(C4):7647-7661.
- [2] WEINGARTNER T, AAGAARD K, WOODGATE R, et al.Circulation on the north central Chukchi Sea shelf[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2005, 52(24/25/26):3150-3174.
- [3] ITOH M, NISHINO S, KAWAGUCHI Y, et al. Barrow Canyon volume, heat, and freshwater fluxes revealed by long-term mooring observations between 2000 and 2008[J].Journal of Geophysical Research:Oceans, 2013, 118(9):4363-4379.
- [4] GONG D L, PICKART R S. Summertime circulation in the eastern Chukchi Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 118:18-31.
- [5] PICKART R S, MOORE G W K, MAO C Y, et al. Circulation of winter water on the Chukchi shelf in early Summer[J].Deep Sea Research Part II:Topical Studies in Oceanography,2016, 130:56-75.
- [6] CORLETT W B, PICKART R S. The Chukchi slope current[J]. Progress in Oceanography, 2017, 153:50-65.
- [7] LI M, PICKART R S, SPALL M A, et al. Circulation of the Chukchi Sea shelfbreak and slope from moored timeseries[J]. Progress in Oceanography, 2019, 172:14-33.
- [8] WATANABE E, ONODERA J, ITOH M, et al. Winter transport of subsurface warm water toward the Arctic Chukchi Borderlant[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 128:115-130.
- [9] SPALL M A, PICKART R S, LI M, et al. Transport of Pacific water into the Canada Basin and the formation of the Chukchi slope current[J]. Journal of Geophysical Research:Oceans, 2018, 123(10):7453-7471.
- [10] STABENO P, KACHEL N, LADD C, et al. Flow patterns in the eastern Chukchi Sea:2010-2015[J]. Journal of Geophysical Research:Oceans, 2018, 123(2):1177-1195.
- [11] SCOTT R M, PICKART R S, LIN P G, et al. Threedimensional structure of a cold-core Arctic eddy interacting with the Chukchi slope current[J]. Journal of Geophysical Research:Oceans, 2019, 124(11):8375-8391.
- [12] BOURY S, PICKART R S, ODIER P, et al. Whither the Chukchi Slope Current[J]. Journal of Physical Oceanography,2020, 50:1717-1732.
- [13] STABENO P J, MCCABE R M. Vertical structure and temporal variability of currents over the Chukchi Sea continental slope[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2020, 177:104805.
- [14] LENG H L, SPALL M A, PICKART R S, et al. Origin and fate of the Chukchi slope current using a numerical model and in situ data[J]. Journal of Geophysical Research:Oceans, 2021, 126(5):e2021JC017291.
- [15] ZHAO M N, TIMMERMANS M L, COLE S, et al. Evolution of the eddy field in the Arctic Ocean's Canada Basin,2005-2015[J]. Geophysical Research Letters, 2016, 43(15):8106-8114.
- [16] BLUNDEN J, ARNDT D S, BARINGER M O. State of the climate in 2010[J]. Bulletin of the American Meteorological Society, 2011, 92(6):S1-S236.
- [17] ZHOU J J, LUO X F, XIAO J G, et al. Modeling the seasonal and interannual variations in nitrate flux through Bering Strait[J]. Journal of Marine Systems, 2021, 218:103527. DOI:https://doi.org/10.1175/1520-0477-92.6.S1.