关于Schur多项式的不可约性On the Irreducility of Schur Polynomial
李晓培
摘要(Abstract):
设m、n是正整数a1,a2,…,an是不同的奇数。本文证明了,当m>1且n是2的方幂时Schur多项式f(x)=(x-a1)2m(x-a2)2m(x-an)2m+1在有理数域Q上是不可约的,该结果部分地解决了Schur猜想问题。
关键词(KeyWords): Schur多项式;不可约;多项式数
基金项目(Foundation):
作者(Author): 李晓培
参考文献(References):
- 1Schbur J· Einige Satse uber Primsahlena min Ar Wtendung auf irreduzibilitatsfragan.Sitsungsbet,Preuss,Akad, Wissensch,Phys Math KL,1929,23:1~24
- 2Pigov D T, Semkovski A B. On the irreducibility of a class of integer polynomials, God.Vissh,Uchebn zaved.Prilozhna Mat,1981,17:47~54
- 3Pigov DT,Kantardzhieva ER. On a class of integer polynomials which are irreducible over the field 0f rational rational numbers,God,Vissh,Uchebn Zaved.Prilozhna Mat ,1980.16:113~122
- 4Saito K. Certain irreducible Polynomials of Schur type.Proc Jpn Acad Ser A Math,1982,58:377~379
- 5Desimirova L K.Generalization of a theorem of G.Polay on irreducibility of Polynomiala Serdica,1982,8:143 ~148
- 6Desimirova L K. Sometheorems on the irreducibiliey of a class of integer Polynomials of Schur type.Serdica.1982,8:243~249
- 7蔡敏.多项式不可约住的一个定理.工科数学.1995(1)
- 8华罗庚.数论导引.北京:科学出版社,1979.15
- 9屠规群.组合计数方法及其应用.北京:科学出版社,1981-16