不同含水率对海相黏土流变特性和流变参数的影响Effect of Different Moisture Content on Rheological Properties and Rheological Parameters of Marine Clay
李伟;刘叔灼;单毅;孙尉翔;
摘要(Abstract):
【目的】研究不同含水率对海相黏土流变特性的影响规律,分析其流变特性的作用机理。【方法】借助大振荡剪切试验,从储能/损耗模量、非线性黏弹性、屈服应力、塑性黏度等不同角度,研究含水率对海相黏土流变特性的影响。【结果】储能模量数值、损耗模量峰值与含水率敏感性保持一致。利用数值拟合获得海相黏土的塑性黏度、屈服应力随含水率的变化规律。【结论】海相黏土的非线性黏弹性可通过Lissajous曲线来表征,含水率对海相黏土流变特性有很大影响,增加含水率可削弱其非线性黏弹性,土样更易屈服,黏度降低。
关键词(KeyWords): 流变学;海相黏土;含水率;非线性黏弹性
基金项目(Foundation): 国家自然科学基金项目(52008121,52011530394);; 广东省自然科学基金面上项目(2020A1515010713);; 中国博士后科学基金面上项目(2020M682652);; 广东省青年优秀科研人才国际培养计划
作者(Authors): 李伟;刘叔灼;单毅;孙尉翔;
参考文献(References):
- [1]刘闯,石瑞香,张应华,等. 2015年全球岛(礁)有多少?陆地面积及海岸线长几何?——基于Google Earth遥感影像的数据结果[J].全球变化数据学报, 2019, 3(02):124-148+215-239.
- [2]常军,刘高焕,刘庆生.黄河三角洲海岸线遥感动态监测[J].地球信息科学, 2004, 6(1):94-98.
- [3]龙建辉,郭文斌,李萍,等.黄土滑坡滑带土的蠕变特性[J].岩土工程学报, 2010, 32(7):1023-1028.
- [4]孙淼军,唐辉明,王潇弘,等.蠕动型滑坡滑带土蠕变特性研究[J].岩土力学, 2017, 38(2):385-391.
- [5]张晓奇,胡新丽,刘忠绪,等.呷爬滑坡滑带土蠕变特性及其稳定性[J].地质科技通报, 2020, 39(6):145-153.
- [6]杨闻宇.剪切载荷作用下高浓度粘性泥沙流变特性的实验研究[D].上海:上海交通大学, 2014.
- [7]雷雁洲,王少伟,吕秦牛,等.碳纤维/聚乳酸复合材料的结晶性能和流变特性[J].复合材料学报, 2018, 35(6):1402-1406.
- [8]张凯,林祥,任冬云.碳基纳米填料填充聚丙烯纳米复合材料的制备与流变特性[J].高分子材料科学与工程,2016, 32(7):170-175.
- [9]沈寿长.泥石流流变特性的试验研究[J].水利学报,1998(9):8-14.
- [10]胡华.粘粒含量对淤泥质软土流变参数的影响及其机理分析[J].岩土工程界, 2005(11):37-39.
- [11] MARKGRAF W, WATTS C W, WHALLEY W R, et al.Influence of organic matter on rheological properties of soil[J]. Applied Clay Science, 2012, 64:25-33.
- [12] BAUMGARTEN W, NEUGEBAUER T, FUCHS E, et al.Structural stability of Marshland soils of the riparian zone of the Tidal Elbe River[J]. Soil and Tillage Research,2012, 125:80-88.
- [13]胡华.含水率对软土流变参数的影响特性及其机理分析[J].岩土工程技术, 2005, 19(3):134-136.
- [14] TORRANCE J K. Physical, chemical and mineralogical influences on the rheology of remoulded low-activity sensitive marine clay[J]. Applied Clay Science, 1999,14(4):199-223.
- [15] MARR J G, HARFF P A, SHANMUGAM G, et al.Experiments on subaqueous sandy gravity flows:The role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin, 2001, 113(11):1377-1386.
- [16] NGUYEN V B Q, KANG H S, KIM Y T. Effect of clay fraction and water content on rheological properties of sand-clay mixtures[J]. Environmental Earth Sciences,2018, 77(16):1-9.
- [17]单毅.基于矿物成分的广东典型河口三角洲第四纪海相细粒土动力特性试验研究[D].广州:华南理工大学,2018.
- [18]莫海鸿,单毅,马灏,等.软土动剪切模量与微观孔隙结构试验研究[J].岩石力学与工程学报, 2016, 35(7):1445-1451.
- [19] COLLYER A A. Techniques in rheological measurement[M]. Dordrecht:Springer Netherlands, 1993.
- [20] GHEZZEHEI T A, OR D. Rheological properties of wet soils and clays under steady and oscillatory stresses[J].Soil Science Society of America Journal, 2001, 65(3):624-637.
- [21] SUN W X, YANG Y R, WANG T, et al. Large amplitude oscillatory shear rheology for nonlinear viscoelasticity in hectorite suspensions containing poly(ethylene glycol)[J].Polymer, 2011, 52(6):1402-1409.
- [22] HYUN K, WILHELM M, KLEIN C O, et al. A review of nonlinear oscillatory shear tests:Analysis and application of large amplitude oscillatory shear(LAOS)[J]. Progress in Polymer Science, 2011, 36(12):1697-1753.
- [23] NIEUWENHUIS J D. Rheological fundamentals of soil mechanics[J]. Engineering Geology, 1988, 26(1):102.
- [24] HUECKEL T A. Water–mineral interaction in hygromechanics of clays exposed to environmental loads:a mixture-theory approach[J]. Canadian Geotechnical Journal, 1992, 29(6):1071-1086.
- [25] MARKGRAF W. Rheology in soils[M]//Encyclopedia of Agrophysics. Dordrecht:Springer Netherlands, 2011:700-705.
- [26] LOW P F. Viscosity of interlayer water in montmorillonite[J]. Soil Science Society of America Journal, 1976, 40(4):500-505.